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In the paper [I] a theorem waa established which reduced the question of the 
atability of stationary motion (in particular, equilibrium) of a rigid body 
with a cavity wholly or partially filled with an Ideal or vlacoua fluid to 
the problem of the mlnlmum of the potential energy. The surface tension of 
the fluid was not taken into account ln the paper. However, In a number of 
ca8et3, particularly under zero-gravity conditions, the inclusion of surface 
tenf#lOn may prove to be slgnlflcant [2]. Theorem8 on the stability of equl- 
llbrlum and etationary motion of a rigid body containing a cavity filled with 
a fluid poseesalng surface tension are proved below. 

1. Let us lmaglne a rigid body having a simply connected cavity to be 
constrained by some stationary frictionleas connections, or to be fr??. We 
denote by Qj (i=l,Z,..., n; n d 6)) the Lagranglan coordinates deilnlng the 
position of the rigid body In a fixed ayetem of coordinates O,<r$ . Let 

there be acting on the body given potential forces poseeeaing a force func- 
tion, which we write as U(p,,...,q, ). In addition to the fixed coordinate 

aystem, we will consider also a moving eystem of coordinate axes oxyr 8 
rigidly fixed to the rigid body. We assume that the cavity of the bodY 1s 

completely filled with two homogeneous, lncompreaelble, Ideal, ,lmmlsclble 
fluids 1 and 2, which have surface tension and are subjected to body force8 

with potential a, (5, n, C) . 

We denote the denalty by p,, the pressure by R,, the volume by T$, and 
the area of the surface of each of the fluids by S, (5 = 1, 2). Generally 

fveaking, S, = S,, + 0,. , where S,, la the area of the dividing surface of 

the fluids, and c,la the area of the surface of the walls of the CavltY 

wetted by the tth fluid. We denote the line of intersection of the dlvldlng 
surface with the walls of the cavity by u , and henceforth we shall assume 
for glmpllqlty that ln the nlghborhood of thle line the surface of the walls 

of the cavity have no sharp edges. However, the case may arise where one of 

the fluids la completely surrounded by the other fluid and does not Come IJIW 
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contaot with the walls of the cavity. In this aase the line 0 doe6 not 
exlet, and the area of the surface of the Inner flyld la S,= S,# . 

We note that the problem am formulated includes the case where the cavity 
Is partially filled by a homogeneous incompressible fluid. In this case the 
free surface of the fluid S,* borders either on air, In which the pressure 
p. Is constant, or on vacuum, where the pressure pa Is taken to be zero. 

Following Gauss, we assume that due to the contact of two different media 
along a certain surface there will be tensile forces having a potontlal equal 
to the product of the area of the surface of contact and the coefficient of 
surface tenelon aII ($- 1,2; r - l,2,3) [3] which depends on the nature of-both 
media. Obviously ai, = a,+ 

Ae la well known [4], the form of the differential equations of motion of 
the fluid Is Independent of the presence or absence of the surface tension 
forces, which however affect the form of the boundary conditions on the BUT- 
face dividing the fluids. The boundary conditions, as well ah the equations 
of motion of the system, may be derived from the principle of least action 
ln the Hamilton-Oatrogradekll form [ 53. According to this principle, for any 

poeelble motion of the system 

5[*T + 23 (X&i” + Y&l” + Z&)] & = 0 (1.1) 
t* ” 

where 2’ 18 the klnetlc energy of the system, X,, y,, 2, are the projec- 
tlona of the active forces on the fixed axes, 6 Is the variational symbol 

(for the change In a poselble displacement) for the corresponding quantity, 
and 

SC, = i3Q = 65” = 0 for t = to, t = 11 
. 

With the above aarrumptlona regarding the forces acting on the system, the 
total work done by these forces ln a virtual dlaplacement becomes 

v=- u-p,\ U&--p,\ U,dt, 

+I 51 

denotes the potential energy of the external forces acting on the system. 

It la not difficult to ehow that [3] 

is, = SC ; + &) i3xds + \ ax,au, i%Jl, = - &ra,, = s 6x2 da (W 
SlS c 0 

Here R, end R. denote the principal radii of curvature of the surface 
S, at a given point, and are considered positive If the correapondlng center 
of curvature lies on the same side of the surface a8 the fluid 1, and nega- 
tive ln the opposite case; 

&x = bn, &cl= 8r.q, 8x, = 6r.n, 
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where Or is a possible displacement of a point of the surface S, or the 

line u relative to the rigid body, n is the unit outer normal to the sur- 

face S,, n, and n, are the unit outer normals to the contour o of the 

surfaces S,, and om , lying in the respective tangent planes to these sur- 

faces. It Is obdous that for the portion S,, of the surface S, the vec- 

tor n is the inner normal. On the surface oi3, 6~ = 0 owing to the 

Impenetrability of the rigld wall. We denote the angle between the normals 

n, and 12, W e . It is easily seen that 

6x, = 6x, cos 0 (1.3) 

TaMng into account the continuity conditions for the fluid and Introdu- 

cing the undetermined multipliers pi(x, y, I, t) which define the hydrody- 

namic pressure, we obtain from (1.1) the equations of motion of the system 

(51 (which are not set down here because they are not required in the sub- 

sequent analysis), as well as Equation 

t, 

UC[ f* & 
#I -P2-%a Ii, f' + &)]dxds - \(ct,,cosB+ cc1s--a2J&x, da} dt = 0 

.I CI 

Owing to the arbitrariness of the possible displacements of a fluid par- 

ticle (arbitrary to the extent that they satisfy the continuity equation), 

we obtain Laplace’s formula [4] for the pressure on the dividing surface of 

the fluids 

Pl - P2 = %2 
(Gl+ik) (1.4) 

and also the formula for the edge angle 0 

Cage = (a23 -(319) Ia12 (1.5) 

which must be satisfied at an arbitrary instant of time. We note that For- 

mula (1.5) has exactly the same form as the formula for the edge angle for 

a fluid in equUibrlum, which is usually obtained either from the principle of 

virtual displacements [3], OP from the condition of equilibrium of the three 

surface tension forces [ 43. Consequently, the moving surface dividing the 

two dissimilar fluids forms the same angle wlth the rigid wall as In equl- 

llbrlum, if of course the quantities air are the same constants. 

For air the coefficient aa is usually taken to be zero, and Formula 

(1.5) assumes the form 
case =--~s/Q (1.6) 

Furthermore, we will consider only the cases where the motion Of the rigid 

body Is continuous, while the motion of the fluid Is accomplished in a smooth 

manner, so that the coordinates of a fluid partlale are continuous funCtiOnS 

of their Initial values and time. 

In vfew of the assumptions that the fluid Is ideal and that the con- 

straints Imposed upon the rigid body are stationary, according to the theo- 

rem regarding the kinetic energy of the system we have 

dT = - dv - ~&G, - algd% - a23dc23 



Stability of motion of . ri&d body containinp a fluid 911 

whence we obtain the energy integral 

T + V + c@,, + a18u18 + aa3uas = const (4.7) 
Note . The Integral (1.7) may also be obtained-from the equations of 

motion of the system, and the following equation may be derived by the usual 
method [ 51 : 

$(T+u=- bl--pJ~,ds 
5 u 

where u. denotes the projection of the relative veloclt 
the normal n to the surface S,*. Using Formulas (1.2 
dlately obtain from this equation the Integral (1.7). 

Y 
of the fluid on 
to (1.5), we imme- 

Thus under the assumed conditions the total mechanical energy cf the sys- 

tem, consisting of the klnetlc energy 2 of the rigid body and fluid, the 

potential e;lergy V of the external forces applied to the system, and the 

surface energy al$la + Ul&s -/- C&623, of the fluid, remains constant 

throughout the motion. 

P. We denote the potential 

+ als61s + Uas6zs. According to 

tlon 

energy of the system by P = V+ al& + 
the principle of virtual displacements Aqua- 

6F = 0 (2.1) 

Is the condition of equilibrium of the rigid body with fluid In its cavity. 

Transforming from the abaolute coordinates 5, q and C of a fluid parti- 

cle to the relative coordinates X, 1/ and I , we write the potential func- 

tion of the body forces In the form 0,(x, y, Z, Q,), retaining the previous 

notation. 

Writing Fiquatlon (2.1) In an explicit form, we have 

In view of the Independence of bg, and bx, bya la , we Immediately 

obtain from this equation the equation of equilibrium oT the rigid body and 

fluid av 
-q= 0 (j=i,...,n) P-2) 

The remaining part of the equality leads to the equation of the dividing 

surface Sir of the fluids In equlllbrlum. If we use Green’s formula and 

take into account the IncompressIbilIty condition, we obtain 
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volume of the fluid requires that the function bn eatls- 

s 
&xds=O 

& 
while It la arbitrary elsewhere; hence we obtain from the latter equality 

the equation of the dividing surface of the fluids ln equlllbrlum 

(6~ - f4 4 - aI4 (i + &) = const (Z-3) 

We shall now consider the case where the conatralnts applied to the rigid 

body allow rotation of the whole system a8 a single rigid body around some 

fixed straight line, for example, the C-axis, and the forces acting on the 

system exert no moment about this line. In this case the kinetic and poten- 

tial energy of the system clearly do not depend on the angle of rotation g. 

of the body about the C-axis, and the equations of motlon have the Integral 

[51 
G, = k = const (2.4) 

where Gc Is the component of the angular momentum of the system along the 

c-axis. 

We also Introduce the coordinate system O,$,n,C which rotates aboutsthe 

c-axis with angular velocity w . If the value of U) Is chosen such that 

at 

IS 

to 

an arbitrary Instant of time the relation 

WJ = k (2.9 
satisfied, then the energy Integral (1.7) may be written In the form (11 

T, + + $- + V + a&L + RSGS + aa3a23 = const (2.6) 

Here T,, denotes the kinetic energy of the system In Its motion relative 

the coordinate axea oi 51~lC , while J 18 the moment of Inertia of the 

system about the C-axis. 

We Introduce the notation 

w= f 7 + v + a&k + a19k3 + ~a~~8 (2.7) 

for the change ln potential energy of the system. 

From the d’Alambert-Lagrange principle [l], It follows that the Equation 

8W = 0 (2.8) 

la the condition for the establishment of the motion In which the whole sy8- 

tern rotates as a single rlgld body about the C-axis with angular velocity 

“0 - k/Jo s where & and Jo are the values of the constant k and the mo- 

ment of inertia J for which such a motion Is set Up. 

From oondltlon (2.8) we eaelly obtain Equations 

8W 
-q= ; cog -- 

O a4j 

?L+$Tp (i=i,...,n--1) 
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fpr the aoordlnates Q, of the rigid body ln Its stationary motion, as well 

as the equation of the dividing surface of the fluids In this motion 

6% - Pa) [ f-J1 + f 0: (P + (I’)] - a,, (& + +J = const (2.10) 

For cu, - 0 , Equation (2.10) takes the form of Equation (2.3). 

The constants appearing on the right-hand sides of Equation (2.3) or 

(2.10) are determined from the imown values of the radii of curvature R, 

and force function U, at any point of the dlvldlng surface [3J. 

The formula for the average curvature l/R,+ l/R8 of a surface determlned 
from the coefficients of the first and second quadratic forms of Gauss C63 
Is well-known In differential geometry). Equations (2.3) and (2.10) are thus 
the differential equations of the dividing surface of the fluids ln equlllb- 
rlum or ln stationary motion, the shape of which Is determined by Integrating 
these equations. The integrals of Equations (2. 
boundary conditions of the form of (1.5) or (1.6 3 

) and (2.10) must satisfy 
If the dividing surface 

intersects the walls of the cavity. Experiment shows that the angle 13 may 
be either an acute or rlRht or obtuse annle. dependinn on the.nature of the 
contiguous media. For a-liquid-air surficeVt.he-angle- 0 Is bbtuse for a 
“nonwettlngn wall, and clr > 0 , while for a “wetting” wall 0 Is acute, 
and In this case c,3 c 0 y 

If then a line of Intersection of the free surface of the 
fluid w the cavity does not exist, and the fluid Is dlstrl- 
buted over the whole surface of the walls of the cavity. 

Far from the walls of the cavity, the shape of the dividing surface of 
the flulds In equilibrium depends on the relations between the magnitudes of 
the surface tensions and the-body forces acting on the fiulds. Thus, for 
example, In a gravitational field the shape of the surface Is determined 141 .-- 
by the caplllarlty constant c = I/z~,~/~Q. 

3. We now consider the question of the stability of equilibrium or sta- 

tionary motion of a rigid body with a fluid In Its Cavity. We shall agree 

that by the stability of the present system with an infinite number of de- 

grees of freedom, we mean stability with respect to the coordinates Q~ and 

velocities Q ,’ of the rigid body, the kinetic energy of the fluid T,c2) , 
and the distance 2 of the dividing surface fron the equilibrium surface (or 

the displacement 0 of the shape of the fluid from the equilibrium shape). 

In addition to conditions (2.1) of Cl], we require that the Inclination of 

the Initial perturbation In the dividing surface to the equilibrium surface 

be sufficiently small at each point of Its surface. We shall assume that 

the equilibrium surface Is connected, the direction of Its normal varying 

continuously for continuous variations of a point on the surface, and that 

the curvatures of Its principal normal sections are everywhere flnlte. We 

shall always choose the distance 1 to be smaller than the least of all the 

radii of curvature of the normal sections of the equilibrium surface. Under 
these conditions the following theorems hold. 

T h e o r e m 3.1 . If Expression 

F = v + a,dS,2+ %As+ ~ts%?J 

has an Isolated minimum F0 for the equilibrium posltlon of the rigid body 

and fluid In Its cavity, then the equlllbrlum position Is stable. 
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Theorem 3.2. If In the state of stationary motion of the rigid 
body with fluid In its cavity Jixpresslon 

has an Isolated minimum W,, then the steady motion Is stable. 

The minimum of Expression F or W Is taken to have the same meaning as 
In [ 11, I.e. either with respect to qj, 1 (for v > El), or with respect to 
!?j, V- 

Proof We perturb the system from its state of stationary motion, 
Imparting to 1;s points certain sufficiently small Initial displacements and 
velocities. Left to Itself, the system will continue to move in accordance 
with the energy Integral (2.6), which may be rewritten in the form 

T + w + _1_ ka - ko’ 1 k2 
T (O) + w(o) + 57 

- koa 
* 2 J =** J(o) (3.1) 

where (0) denotes the Initial value of the corresponding quantity, and k 
1s the value of the Integral constant for the perturbed motion. 

Let A be some arbitrarily small positive number which does not exceed 
a given number L defining the region of stability, whloh we will In any case 
assume to be less than the number E which defines the region of minimum W 
Cl1 * We denote by W1 the smallest possible value that can be assumed by 
the the expression W If the absolute value of the distance z or one of 
the coordinates Qj (/’ = 1, . . ., n - ?) is equal to A , while the rest of these 
quantities and the displacement v satisfy conditions 
V > El, where clear1 We choose the number A 

1 qj 1 <A, 1 I (<A, 
to be so small 

that the Inequality T 
Wi> w, . 

W, - W, 1 <z will be satisfied. 
We choose the Initial positions and velocities of points of the system 

such that the inequality 

T*(o) + W(O) + ; (k2 - kox) ( J+j - f) < WI 

will be fulfilled for all values which J may assume satisfying conditions 

IqjIdA, I~I<A, v > sl (3.2) 

For such a choice of Initial conditions, at all subsequent times of the 
motion for which the lnequalltles (3.2) are satisfied, we will have in 
accordance with the energy Integral (3.1) the InequalIty 

T, + 1Y < WI (3.3) 

from which It follows that W c W !Chis inequality will be satisfied at 
&east until 14,) and 111 exceed Chi number A . ht the initial values Of 
la I and Iz) were chosen to be less than A , 

gn)neelither exceed ‘)A 

and the initial displacement 
and since q. I, v vary continuously with time, then (4, I and 1~1 

nor equal A before that time. 

However, the equalities 
I qjl =A, Ill=A 

are impossible under the condition V),El In view of the Inequality (3.3). 
Consequently, If the motion of the system IS continuous, So that 4j,l,V vary 
continuously with time, then starting at the Initial instant of time, we have 
the lnequalltles 

I !Ijl <L? I4j’ I <LY Ill<& I T*(2) I < 4 v >,el 

all of which ~111 continue to be satisfied as long as the last one of them 
is observed. Thus Teorem 3.2 Is proved. The validity of Theorem 3.1 follows 
from the proof, 
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We note that a theorem similar to Theorem 3.1 can also be stablished for 
the case of relative equilibrium of a rigid body with a cavity filled with a 
fluid possessing surface tension If in addition to the potential forces, 
there acts the moment of other forces which are directed along the C-axis, 
ln which case the angular velocity u) of rotation of the body about the 
C-axis remains constant throughout the motion. Under these conditions the 
following theorem [ l] Is valid. 

Theorem 3.3 If In the position of relative equilibrium of the 

rigid body and the fluid in its cavity Expression 

W, = V i- adI + wh + cw23 - ‘1202J 

has an Isolated minimum, then the position of relative equllibr:um Is stable. 

Since condition tJV,= 0 for U) = const is equivalent to condition 6W=O 

for k,,= COnSt , It is easily seen from a straightforward argument using the 

equality wJo= h that the position of relative equilibrium may be compared 

with the stationary motion of the system. It Is not difficult to see [ l] 

that If the expression W, has a minimum for a certain position of relative 

equilibrium, then the expression W for the corresponding stationary motion 

also has a minimum. 

It was assumed above that the fluid was Ideal, but Theorems 3.1 to 3.3 

remain valid for a viscous liquid as well. 

In the case of a viscous fluid the Euler equations are replaced by the 
Navler-Stokes equations; the velocity of a fluid particle In contact with 
the Walls of the cavity Is taken to be equal to the velocity of the corre- 
sponding point on the wall, and the dynamic condition (1.4) on the free sur- 
face Is replaced by condition [4] 

(pl - pa) ni = ((Jik’(‘) - (3iGt2)) nk + %!2 ($ + &) % (3.4) 

where uiiil) and $k ‘2) denote the “v~~cou~~ stress tensors. Under these 
conditions the equations of motion of the system reduce to the equations for 
the rate of energy dissipation 

where #, Is defined by the Navler-Stokes formula [1], and pi Is the coef- 
ficient of viscosity. Hence for a viscous fluid, in place of the energy 
Integral (1.7) we have the inequality 

T i- V i- a12Slz f UIPIS + CZBSZS f T (O) + V(O) + a,aSl~(o) + au.rJO) + as589 (0) (3.5) 

and nothing Is changed in the proof of Theorems given above. 

In a slmllar manner one may validate Theorems 3.1 and 3.2 of [l] for a 
viscous liquid possessing surface tension, 
(2.7). 

taking into account the definition 

The author thanks N.N. Krasovskll, N.N. Molseev and G.K. Pozharltskll 

for discussions of the present paper. 
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